Stability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces

نویسندگان

  • Zhihua Wang
  • Xiaopei Li
  • Themistocles M. Rassias
  • Narcisa C. Apreutesei
چکیده

and Applied Analysis 3 for some natural number n0. Moreover, if the second alternative holds, then i the sequence {Jnx} is convergent to a fixed point y∗ of J ; ii y∗ is the unique fixed point of J in the set Y : {y ∈ X | d J0x, y < ∞} and d y, y∗ ≤ 1/ 1 − L d y, Jy , for all , x, y ∈ Y . Following 30, 31 , we recall some basic facts concerning multi-normed spaces and some preliminary results. Let E, ‖ · ‖ be a complex normed space, and let k ∈ N. We denote by Ek the linear space E⊕ · · · ⊕E consisting of k-tuples x1, . . . , xk , where x1, . . . , xk ∈ E. The linear operations Ek are defined coordinatewise. The zero element of either E or Ek is denoted by 0. We denote by Nk the set {1, 2, . . . , k} and by Sk the group of permutations on k symbols. Definition 2.2 cf. 30, 31 . A multi-norm on {Ek : k ∈ N} is a sequence ‖ ·‖k ‖ ·‖k : k ∈ N such that ‖ · ‖k is a norm on Ek for each k ∈ N, ‖x‖1 ‖x‖ for each x ∈ E, and the following axioms are satisfied for each k ∈ N with k ≥ 2: N1 ‖ xσ 1 , . . . , xσ k ‖k ‖ x1, . . . , xk ‖k, for σ ∈ Sk, x1, . . . , xk ∈ E; N2 ‖ α1x1, . . . , αkxk ‖k ≤ maxi∈Nk |αi| ‖ x1, . . . , xk ‖k, for α1, . . . , αk ∈ C, x1, . . . , xk ∈ E; N3 ‖ x1, . . . , xk−1, 0 ‖k ‖ x1, . . . , xk−1 ‖k−1, for x1, . . . , xk−1 ∈ E; N4 ‖ x1, . . . , xk−1, xk−1 ‖k ‖ x1, . . . , xk−1 ‖k−1, for x1, . . . , xk−1 ∈ E. In this case, we say that Ek, ‖ · ‖k : k ∈ N is a multi-normed space. Suppose that Ek, ‖ · ‖k : k ∈ N is a multi-normed space, and take k ∈ N. We need the following two properties of multi-norms. They can be found in 30 a ‖ x, . . . , x ‖k ‖x‖, for x ∈ E, b maxi∈Nk‖xi‖ ≤ ‖ x1, . . . , xk ‖k ≤ ∑k i 1‖xi‖ ≤ kmaxi∈Nk‖xi‖, for x1, . . . , xk ∈ E. It follows from b that if E, ‖ · ‖ is a Banach space, then Ek, ‖ · ‖k is a Banach space for each k ∈ N; in this case, Ek, ‖ · ‖k : k ∈ N is a multi-Banach space. Lemma 2.3 cf. 30, 31 . Suppose that k ∈ N and x1, . . . , xk ∈ Ek. For each j ∈ {1, . . . , k}, let x n n 1,2,... be a sequence in E such that limn→∞ x n xj . Then limn→∞ ( x1 n − y1, . . . , x n − yk ) ( x1 − y1, . . . , xk − yk ) 2.4 holds for all y1, . . . , yk ∈ Ek. Definition 2.4 cf. 30, 31 . Let Ek, ‖ · ‖k : k ∈ N be a multi-normed space. A sequence xn in E is a multi-null sequence if for each ε > 0, there exists n0 ∈ N such that sup k∈N ‖ xn, . . . , xn k−1 ‖k ≤ ε n ≥ n0 . 2.5 Let x ∈ E, we say that the sequence xn is multi-convergent to x in E and write limn→∞ xn x if xn − x is a multi-null sequence. 4 Abstract and Applied Analysis 3. Main Results Throughout this section, let ε ≥ 0, E be a linear space, and let Fn, ‖ · ‖n : n ∈ N be a multi-Banach space. For convenience, we use the following abbreviation for a given mapping f : E → F: Df ( x, y ) 11 [ f ( x 2y ) f ( x − 2y − 44fx y fx − y − 12f3y 48f2y − 60fy 66f x . 3.1 Before proceeding to the proof of the main results in this section, we shall need the following two lemmas. Lemma 3.1 cf. 34 . If an even mapping f : X → Y satisfies 1.1 , then f is quartic. Lemma 3.2 cf. 34 . If an odd mapping f : X → Y satisfies 1.1 , then f is cubic-additive. Theorem 3.3. Suppose that an even mapping f : E → F satisfies f 0 0 and sup k∈N ∥Df ( x1, y1 ) , . . . , Df ( xk, yk ))∥∥ k ≤ ε 3.2 for all x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique quartic mapping Q : E → F satisfying 1.1 and sup k∈N ∥f x1 −Q x1 , . . . , f xk −Q xk )∥∥ k ≤ 13 330 ε 3.3 for all x1, . . . , xk ∈ E. Proof. Letting x1 · · · xk 0 in 3.2 , we get sup k∈N ∥−12f3y1 ) 70f ( 2y1 ) − 148fy1 ) , . . . ,−12f3yk ) 70f ( 2yk ) − 148fyk ))∥∥ k ≤ ε 3.4 for all y1, . . . , yk ∈ E. Replacing x1, . . . , xk with y1, . . . , yk in 3.2 , we obtain sup k∈N ∥−f3y1 ) 4f ( 2y1 ) 17f ( y1 ) , . . . ,−f3yk ) 4f ( 2yk ) 17f ( yk ))∥∥ k ≤ ε 3.5 for all y1, . . . , yk ∈ E. It follows from 3.4 and 3.5 that sup k∈N ∥f 2x1 − 16f x1 , . . . , f 2xk − 16f xk )∥∥ k ≤ 13 22 ε 3.6 for all x1, . . . , xk ∈ E. Abstract and Applied Analysis 5 Let E : {gg : E → F, g 0 0}, and introduce the generalized metric d defined on E byand Applied Analysis 5 Let E : {gg : E → F, g 0 0}, and introduce the generalized metric d defined on E by d ( g, h ) inf { c ∈ 0, ∞ | sup k∈N ∥g x1 − h x1 , . . . , g xk − h xk )∥∥ k ≤ c, ∀x1, . . . , xk ∈ E } . 3.7 Then, it is easy to show that d is a complete generalized metric on E see the proof in 36 or 5 . We now define a function J1 : E → E by J1g x 1 16 g 2x , ∀x ∈ E. 3.8 We assert that J1 is a strictly contractivemapping. Given g, h ∈ E, let c ∈ 0,∞ be an arbitrary constant with d g, h ≤ c. From the definition of d, it follows that sup k∈N ∥g x1 − h x1 , . . . , g xk − h xk )∥∥ k ≤ c 3.9 for all x1, . . . , xk ∈ E. Therefore, sup k∈N ∥J1g x1 − J1h x1 , . . . , J1g xk − J1h xk )∥∥ k sup k∈N ∥∥∥∥ ( 1 16 g 2x1 − 1 16 2x1 , . . . , 1 16 g 2xk − 1 16 2xk )∥∥∥∥ k ≤ 1 16 c 3.10 for all x1, . . . , xk ∈ E. Hence, it holds that d J1g , J1h ≤ 1/16 c, that is, d J1g, J1h ≤ 1/16 d g, h for all g, h ∈ E. By using 3.6 , we have d J1f, f ≤ 13/352 ε. According to Lemma 2.1, we deduce the existence of a fixed point of J1, that is, the existence of a mapping Q : X → Y such that Q 2x 16Q x for all x ∈ E. Moreover, we have d J 1 f, Q → 0, which implies that Q x lim n→∞ ( J 1 f ) x lim n→∞ f 2x 16n , ∀x ∈ E. 3.11 Also, d f, Q ≤ 1/ 1 − L d J1f, f implies the inequality d ( f, Q ) ≤ 1 1 − 1/16 d ( J1f, f ) ≤ 13 330 ε. 3.12 6 Abstract and Applied Analysis Set x1 · · · xk 2x, y1 · · · yk 2y in 3.2 , and divide both sides by 16. Then, using property a , we obtain ∥DQ ( x, y )∥∥ lim n→∞ 1 16n ∥Df ( 2x, 2y )∥∥ ≤ lim n→∞ ε 16n 0 3.13 for all x, y ∈ E. Hence, by Lemma 3.1, Q is quartic. The uniqueness of Q follows from the fact that Q is the unique fixed point of J1 with the property that there exists l ∈ 0, ∞ such that sup k∈N ∥f x1 −Q x1 , . . . , f xk −Q xk )∥∥ k ≤ l 3.14 for all x1, . . . , xk ∈ E. This completes the proof of the theorem. Theorem 3.4. Suppose that an odd mapping f : E → F satisfies sup k∈N ∥Df ( x1, y1 ) , . . . , Df ( xk, yk ))∥∥ k ≤ ε 3.15 for all x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique additive mapping A : E → F and a unique cubic mapping C : E → F satisfying 1.1 and sup k∈N ∥f 2x1 − 8f x1 −A x1 , . . . , f 2xk − 8f xk −A xk )∥∥ k ≤ 17 33 ε, sup k∈N ∥f 2x1 − 2f x1 − C x1 , . . . , f 2xk − 2f xk − C xk )∥∥ k ≤ 17 231 ε 3.16 for all x1, . . . , xk ∈ E. Proof. Put x1 · · · xk 0 in 3.15 . Then, by the oddness of f , we have sup k∈N ∥12f ( 3y1 ) − 48f2y1 ) 60f ( y1 ) , . . . 12f ( 3yk ) − 48f2yk ) 60f ( yk ))∥∥ k ≤ ε 3.17 for all y1, . . . , yk ∈ E. Replacing x1, . . . , xk with 2y1, . . . , 2yk in 3.15 , we obtain sup k∈N ∥11f ( 4y1 ) − 56f3y1 ) 114f ( 2y1 ) − 104fy1 ) , . . . , 11f ( 4yk ) − 56f3yk ) 114f ( 2yk ) − 104fyk ))∥∥ k ≤ ε 3.18 for all y1, . . . , yk ∈ E. By 3.17 and 3.18 , we have sup k∈N ∥f 4x1 − 10f 2x1 16f x1 , . . . , f 4xk − 10f 2xk 16f xk )∥∥ k ≤ 17 33 ε 3.19 Abstract and Applied Analysis 7 for all x1, . . . , xk ∈ E. Putting α x : f 2x − 8f x for all x ∈ E, we getand Applied Analysis 7 for all x1, . . . , xk ∈ E. Putting α x : f 2x − 8f x for all x ∈ E, we get sup k∈N ‖ α 2x1 − 2α x1 , . . . , α 2xk − 2α xk ‖k ≤ 17 33 ε 3.20 for all x1, . . . , xk ∈ E. Let the same definitions for E and d as in the proof of Theorem 3.3 such that E, d becomes a complete generalized metric space. We now define a function J2 : E → E by J2g x 1 2 g 2x , ∀x ∈ E. 3.21 Applying a similar technique as in the proof of Theorem 3.3, we obtain d J2g, J2h ≤ 1/2 c, that is, d J2g, J2h ≤ 1/2 d g, h for all g, h ∈ E. By 3.20 , we have d J2α, α ≤ 17/66 ε. According to Lemma 2.1, we deduce the existence of a fixed point of J2, that is, the existence of a mapping A : X → Y such that A 2x 2A x for all x ∈ E. Moreover, we have d J 2 α,A → 0, which implies that A x lim n→∞ ( J 2 α ) x lim n→∞ α 2x 2n , ∀x ∈ E. 3.22 Also, d α,A ≤ 1/ 1 − L d J2α, α implies the inequality d α, A ≤ 1 1 − 1/2 d J2α, α ≤ 17 33 ε. 3.23 Hence, it follows that ∥DA ( x, y )∥∥ lim n→∞ 1 2n ∥Dα ( 2x, 2y )∥∥ lim n→∞ 1 2n ∥∥Df ( 2 1x, 2 1y ) − 8Df2nx, 2ny ∥∥ ≤ lim n→∞ ε 2n 0 3.24 for all x, y ∈ E. This means that A satisfies 1.1 . Then, by Lemma 3.2, x → A 2x − 8A x is additive. Thus, by A 2x 2A x , we conclude that A is additive. Putting β x : f 2x − 2f x for all x ∈ E, we get sup k∈N ∥β 2x1 − 8β x1 , . . . , α 2xk − 8β xk )∥∥ k ≤ 17 33 ε 3.25 for all x1, . . . , xk ∈ E. We now define a function J3 : E → E by J3g x 1 8 g 2x , ∀x ∈ E. 3.26 8 Abstract and Applied Analysis Applying a similar technique as in the proof of Theorem 3.3, we obtain d J3g, J3h ≤ 1/8 c, that is, d J3g, J3h ≤ 1/8 d g, h for all g, h ∈ E. By 3.25 , we have d J3β, β ≤ 17/264 ε. According to Lemma 2.1, we deduce the existence of a fixed point of J3, that is, the existence of a mapping C : X → Y such that C 2x 8C x for all x ∈ E. Moreover, we have d J 3 β, C → 0, which implies that C x lim n→∞ ( J 3 β ) x lim n→∞ β 2x 8n , ∀x ∈ E. 3.27 Also, d β, C ≤ 1/ 1 − L d J3β, β implies the inequality d ( β, C ) ≤ 1 1 − 1/8 d ( J3β, β ) ≤ 17 231 ε. 3.28 Then we have ∥DC ( x, y )∥∥ lim n→∞ 1 8n ∥Dβ ( 2x, 2y )∥∥ lim n→∞ 1 8n ∥∥Df ( 2 1x, 2 1y ) − 2Df2nx, 2ny ∥∥ ≤ lim n→∞ ε 8n 0 3.29 for all x, y ∈ E. Hence, the mapping C satisfies 1.1 . Therefore, by Lemma 3.2, x → C 2x − 2C x is cubic. Thus, C 2x 8C x implies that the mapping C is cubic. The uniqueness of A and C can be proved in the same reasoning as in the proof of Theorem 3.3. This completes the proof of the theorem. Theorem 3.5. Suppose that an odd mapping f : E → F satisfies sup k∈N ∥Df ( x1, y1 ) , . . . , Df ( xk, yk ))∥∥ k ≤ ε 3.30 for all x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique additive mapping A : E → F and a unique cubic mapping C : E → F such that sup k∈N ∥f x1 −A x1 − C x1 , . . . , f xk −A xk − C xk )∥∥ k ≤ 68 693 ε 3.31 for all x1, . . . , xk ∈ E. Proof. By Theorem 3.4, there exist an additive mapping A0 : E → F and a cubic mapping C0 : E → F such that sup k∈N ∥f 2x1 − 8f x1 −A0 x1 , . . . , f 2xk − 8f xk −A0 xk )∥∥ k ≤ 17 33 ε, sup k∈N ∥f 2x1 − 2f x1 − C0 x1 , . . . , f 2xk − 2f xk − C0 xk )∥∥ k ≤ 17 231 ε 3.32 Abstract and Applied Analysis 9 for all x1, . . . , xk ∈ E. Combining the above two equations in 3.32 yields thatand Applied Analysis 9 for all x1, . . . , xk ∈ E. Combining the above two equations in 3.32 yields that sup k∈N ∥6f x1 A0 x1 − C0 x1 , . . . , f 6xk A0 xk − C0 xk )∥∥ k ≤ 136 231 ε 3.33 for all x1, . . . , xk ∈ E. So we obtain 3.31 by letting A −A0/6 and C C0/6. To prove the uniqueness of A and C, let A1, C1 : E → F be other additive and cubic mappings satisfying 3.31 . Let A′ A − A1 and C′ C − C1. Then, using property a , we obtain ∥A′ x C′ x ∥∥ ≤ ∥f x −A x − C x ∥∥ ∥f x −A1 x − C1 x ∥∥ ≤ 136 693 ε 3.34 for all x ∈ E, then 3.34 implies that lim n→∞ 1 8n ∥A′ 2x C′ 2x ∥∥ 0 3.35 for all x ∈ E. Therefore, C′ x 0 for all x ∈ E. By 3.34 , we have A′ x 0 for all x ∈ E. This completes the proof of the theorem. Theorem 3.6. Suppose that a mapping f : E → F satisfies f 0 0 and sup k∈N ∥Df ( x1, y1 ) , . . . , Df ( xk, yk ))∥∥ k ≤ ε 3.36 for all x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique additive mapping A : E → F, a unique cubic mapping C : E → F, and a unique quartic mapping Q : E → F such that sup k∈N ∥∥ f x1 −A x1 − C ( x1 −Q x1 , . . . , f xk −A xk − C xk −Q xk )∥∥ k ≤ 953 6930 ε 3.37 for all x1, . . . , xk ∈ E. Proof. Let fo x 1/2 f x − f −x for all x ∈ E, then fo 0 0, fo −x −fo x and sup k∈N ∥Dfo ( x1, y1 ) , . . . , Dfo ( xk, yk ))∥∥ k ≤ ε 3.38 for all x1, . . . , xk, y1, . . . , yk ∈ E. From Theorem 3.5, it follows that there exists a unique additive mapping A : E → F and a unique cubic mapping C : E → F satisfying 3.31 . Let fe x 1/2 f x f −x for all x ∈ E, then fe 0 0, fe −x fe x and sup k∈N ∥Dfe ( x1, y1 ) , . . . , Dfe ( xk, yk ))∥∥ k ≤ ε 3.39 10 Abstract and Applied Analysis for all x1, . . . , xk, y1, . . . , yk ∈ E. By Theorem 3.3, there exists a unique quartic mapping Q : E → F satisfying 3.3 . Now it is obvious that 3.37 holds for all x1, . . . , xk ∈ E. This completes the proof of the theorem. AcknowledgmentsThe authors are very grateful to the referees for their helpful comments and suggestions.This research is supported by Guangdong Provincial Natural Science Foundation 07301595 ,China. References1 S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1964.2 D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy ofSciences of the United States of America, vol. 27, pp. 222–224, 1941.3 T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the MathematicalSociety of Japan, vol. 2, pp. 64–66, 1950.4 Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the AmericanMathematical Society, vol. 72, no. 2, pp. 297–300, 1978.5 D.Miheţ and V. Radu, “On the stability of the additive Cauchy functional equation in random normedspaces,” Journal of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 567–572, 2008.6 A. K. Mirmostafaee and M. S. Moslehian, “Fuzzy versions of Hyers-Ulam-Rassias theorem,” FuzzySets and Systems, vol. 159, no. 6, pp. 720–729, 2008.7 P. W. Cholewa, “Remarks on the stability of functional equations,” Aequationes Mathematicae, vol. 27,no. 1-2, pp. 76–86, 1984.8 St. Czerwik, “On the stability of the quadratic mapping in normed spaces,” Abhandlungen aus demMathematischen Seminar der Universität Hamburg, vol. 62, pp. 59–64, 1992.9 S. Czerwik, “The stability of the quadratic functional equation,” in Stability of Mappings of Hyers-UlamType, Th. M. Rassias and J. Tabor, Eds., Hadronic Press Collect. Orig. Artic., pp. 81–91, Hadronic Press,Palm Harbor, Fla, USA, 1994.10 S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor,Fla, USA, 2003.11 V. Faı̆ziev and Th. M. Rassias, “The space of ψ, γ -pseudocharacters on semigroups,” NonlinearFunctional Analysis and Applications, vol. 5, no. 1, pp. 107–126, 2000.12 V. A. Faı̆ziev, Th. M. Rassias, and P. K. Sahoo, “The space of ψ, γ -additive mappings on semigroups,”Transactions of the American Mathematical Society, vol. 354, no. 11, pp. 4455–4472, 2002.13 P. Găvruţă, S.-M. Jung, and Y. Li, “Hyers-Ulam stability of mean value points,” Annals of FunctionalAnalysis, vol. 1, no. 2, pp. 68–74, 2010.14 A. Gilányi, K. Nagatou, and P. Volkmann, “Stability of a functional equation coming from thecharacterization of the absolute value of additive functions,” Annals of Functional Analysis, vol. 1,no. 2, pp. 1–6, 2010.15 D. H. Hyers and Th. M. Rassias, “Approximate homomorphisms,” Aequationes Mathematicae, vol. 44,no. 2-3, pp. 125–153, 1992.16 G. Isac and Th. M. Rassias, “On the Hyers-Ulam stability of ψ-additive mappings,” Journal ofApproximation Theory, vol. 72, no. 2, pp. 131–137, 1993.17 G. Isac and Th. M. Rassias, “Stability of ψ-additive mappings: applications to nonlinear analysis,”International Journal of Mathematics and Mathematical Sciences, vol. 19, no. 2, pp. 219–228, 1996.18 S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, HadronicPress, Palm Harbor, Fla, USA, 2001.19 S.-M. Jung,Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of SpringerOptimization and Its Applications, Springer, New York, NY, USA, 2011.20 K.-W. Jun and H.-M. Kim, “The generalized Hyers-Ulam-Rassias stability of a cubic functionalequation,” Journal of Mathematical Analysis and Applications, vol. 274, no. 2, pp. 267–278, 2002.21 S. H. Lee, S. M. Im, and I. S. Hwang, “Quartic functional equations,” Journal of Mathematical Analysisand Applications, vol. 307, no. 2, pp. 387–394, 2005. Abstract and Applied Analysis11and Applied Analysis11 22 Th. M. Rassias, “On a modified Hyers-Ulam sequence,” Journal of Mathematical Analysis andApplications, vol. 158, no. 1, pp. 106–113, 1991.23 Th. M. Rassias, “On the stability of functional equations in Banach spaces,” Journal of MathematicalAnalysis and Applications, vol. 251, no. 1, pp. 264–284, 2000.24 Th. M. Rassias, “On the stability of functional equations originated by a problem of Ulam,”Mathematica, vol. 44 67 , no. 1, pp. 39–75, 2002.25 Th.M. Rassias, “On the stability of minimum points,”Mathematica, vol. 45 68 , no. 1, pp. 93–104, 2003.26 Th. M. Rassias, Ed., Functional Equations, Inequalities and Applications, Kluwer Academic Publishers,Dordrecht, The Netherlands, 2003.27 V. Radu, “The fixed point alternative and the stability of functional equations,” Fixed Point Theory,vol. 4, no. 1, pp. 91–96, 2003.28 L. P. Castro and A. Ramos, “Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integralequations,” Banach Journal of Mathematical Analysis, vol. 3, no. 1, pp. 36–43, 2009.29 C. Park and Th. M. Rassias, “Fixed points and generalized Hyers-Ulam stability of quadraticfunctional equations,” Journal of Mathematical Inequalities, vol. 1, no. 4, pp. 515–528, 2007.30 H. G. Dales and M. E. Polyakov, “Multi-normed spaces and multi-Banach algebras,” preprint.31 H. G. Dales and M. S. Moslehian, “Stability of mappings on multi-normed spaces,” GlasgowMathematical Journal, vol. 49, no. 2, pp. 321–332, 2007.32 M. S. Moslehian, “Superstability of higher derivations in multi-Banach algebras,” Tamsui OxfordJournal of Mathematical Sciences, vol. 24, no. 4, pp. 417–427, 2008.33 M. S. Moslehian, K. Nikodem, and D. Popa, “Asymptotic aspect of the quadratic functional equationin multi-normed spaces,” Journal of Mathematical Analysis and Applications, vol. 355, no. 2, pp. 717–724,2009.34 M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, C. Park, and S. Zolfaghari, “Stability of an additive-cubic-quartic functional equation,” Advances in Difference Equations, vol. 2009, Article ID 395693, 20 pages,2009.35 J. B. Diaz and B. Margolis, “A fixed point theorem of the alternative, for contractions on a generalizedcomplete metric space,” Bulletin of the American Mathematical Society, vol. 74, pp. 305–309, 1968.36 O. Hadžić, E. Pap, and V. Radu, “Generalized contraction mapping principles in probabilistic metricspaces,” Acta Mathematica Hungarica, vol. 101, no. 1-2, pp. 131–148, 2003. Submit your manuscripts athttp://www.hindawi.com Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2014MathematicsJournal ofHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014Mathematical Problemsin Engineering Hindawi Publishing Corporationhttp://www.hindawi.comDifferential EquationsInternational Journal of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of generalized QCA-functional equation in P-Banach spaces

In  this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.

متن کامل

Cubic-quartic functional equations in fuzzy normed spaces

In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation

متن کامل

Generalized Hyers–ulam Stability of an Aqcq-functional Equation in Non-archimedean Banach Spaces

In this paper, we prove the generalized Hyers–Ulam stability of the following additive-quadratic-cubic-quartic functional equation f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) in non-Archimedean Banach spaces.

متن کامل

Intuitionistic fuzzy stability of a quadratic and quartic functional equation

In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.

متن کامل

On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[    fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),]    where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...

متن کامل

2-Banach stability results for the radical cubic functional equation related to quadratic mapping

The aim of this paper is to introduce and solve the generalized radical cubic functional equation related to quadratic functional equation$$fleft(sqrt[3]{ax^{3}+by^{3}}right)+fleft(sqrt[3]{ax^{3}-by^{3}}right)=2a^{2}f(x)+2b^{2}f(y),;; x,yinmathbb{R},$$for a mapping $f$ from $mathbb{R}$ into a vector space. We also investigate some stability and hyperstability results for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014